Set Code :	T2
Booklet Code :	A

PHYSICS

51.	Tw	o quantities A and ce. The dimensio	l B are ns of l	related by the rel B will be	ation	A/B = m where m	is lin	ear mass density and A is
	(1)	same as that of	latent	heat	(2)	same as that of	press	sure
	(3)	same as that of	work		(4)		_	
52.	The	e dimensional for	mula c	of capacitance in	terms	of M, L, T and I		
	(1)	$[ML^2T^2I^2]$	(2)	$[ML^{-2}T^{4}l^{2}]$	(3)	$[M^{-1}L^3T^3I]$	(4)	$[M^{-1}L^{-2}T^4I^2]$
53.		m and n are the c						
	(1)	l+m+n=1	(2)	$l^2 + m^2 + n^2 = 1$	(3)	$\frac{1}{l} + \frac{1}{m} + \frac{1}{n} = 1$	(4)	lmn = 1
54.	The	angle between i+	i and	i+k is				
	(1)		(2)		(3)	45°	(4)	60°
55.	A pa	article is moving s ⁻¹ northwards. Th	eastw he ave	ards with a veloc rage acceleration	ity of	5 ms ⁻¹ . In 10 sec is time is	onds	the velocity changes to
	(1)	$\frac{1}{\sqrt{2}}$ ms ⁻² toward	ls nort	h-west	(2)	zero		
	(3)	$\frac{1}{2}$ ms ⁻² towards	north		(4)	$\frac{1}{\sqrt{2}}$ ms ⁻² toward	ls nor	th-east
56.	The	linear momentum	nofaj	particle varies wi	th tin	e t as p = a + bt +	ct² wł	nich of the following is
	(1)	Force veries wit	htima	in a quadratia m				

- (1) Force varies with time in a quadratic manner.
- (2) Force is time-dependent.
- (3) The velocity of the particle is proportional to time.
- (4) The displacement of the particle is proportional to t.
- 57. A shell of mass m moving with a velocity v suddenly explodes into two pieces. One part of mass m/4 remains stationary. The velocity of the other part is
 - (1) v
- (2) 2v
- (3) 3v/4
- (4) 4v/3

Set Code :	T2
Booklet Code :	

58.	The	velocity of a	reely fal	ling body afte	r 2s is							
	(1)	9.8 ms ⁻¹	(2)	10.2 ms ⁻¹	(3)	18.6 ms ⁻¹	(4)	19.6 ms ⁻¹				
59.		arge number of ground on whi				s with the same	speed u	. The maximum	area on			
	(1)	$\frac{\pi u^2}{g^2}$	(2)	$\frac{\pi u^4}{g^2}$	(3)	$\frac{\pi u^2}{g^4}$	(4)	$\frac{\pi u}{g^4}$				
60.		minimum stop coefficient of f				_		d v along a level	road, if			
	(1)	$\frac{v^2}{2\mu g}$	(2)	$\frac{v^2}{\mu g}$	(3)	$\frac{v^2}{4\mu g}$	(4)	$\frac{v}{2\mu g}$	9 0			
61.		When a bicycle is in motion, the force of friction excreted by the ground on the two wheels is such that it acts										
	(1)	In the backwa	ard direc	tion on the fro	nt wheel	and in the forv	vard dire	ection on the rear	wheel			
	(2)	In the forward	d direction	on on the front	wheel a	nd in the backy	vard dire	ection on the rear	wheel			
	(3)	In the backwa	ard direc	tion on both th	ne front a	and the rear wh	eels					
	(4)	In the forward	d direction	on on both the	front an	d the rear whe	els					
62.	In a	perfectly inela	stic colli	sion, the two	bodies							
	(1)	strike and exp	olode .		(2)	explode with	out striki	ng				
	(3)	implode and o	explode		(4)	combine and	nove to	gether				
63.	Und		a consta	ant force, a par	rticle is 6	experiencing a	constan	t acceleration, th	nen the			
	(1)	zero			(2)	positive						
	(3)	negative			(4)	increasing uni	formly	with time				
				The state of the s								

			В
64.	Con	sider the following two statements:	
	A:	Linear momentum of a system of particles is zero.	
	B:	Kinetic energy of a system of particles is zero.	

Then (1) A implies B & B implies A

(2) A does not imply B & B does not imply A

(3) A implies B but B does not imply A

(4) A does not imply B but B implies A

65. An engine develops 10 kW of power. How much time will it take to lift a mass of 200 kg to a height of 40 m? (Given $g = 10 \text{ ms}^{-2}$)

(1) 4s

(2) 5s

(3) 8s

(4) 10s

66. If a spring has time period T, and is cut into n equal parts, then the time period will be

(1) $T\sqrt{n}$

(2) $\frac{T}{\sqrt{n}}$

(3) nT

(4) T

67. When temperature increases, the frequency of a tuning fork

- (1) increases
- (2) decreases
- (3) remains same
- (4) increases or decreases depending on the materials

68. If a simple harmonic motion is represented by $\frac{d^2x}{dy^2} + \alpha x = 0$, its time period is

(1) $2\pi\sqrt{\alpha}$

 $(3) \quad \frac{2\pi}{\sqrt{\alpha}} \qquad \qquad (4) \quad \frac{2\pi}{\alpha}$

69. A cinema hall has volume of 7500 m3. It is required to have reverberation time of 1.5 seconds. The total absorption in the hall should be

(1) 850 w-m²

(2) 82.50 w-m²

(3) 8.250 w-m² (4) 0.825 w-m²

70.	To a	bsorb the sound i	n a ha	all which of the fe	ollowi	ing are used		
	(1)	Glasses, stores			(2)	Carpets, curtain	ıs	
	(3)	Polished surfac	es		(4)	Platforms		
71.	IfN	represents avaga	dro's	number, then the	numb	per of molecules	in 6 gr	n of hydrogen at NTP is
		2N	(2)		(3)			N/6
72.	The	mean translation	al kin	etic energy of a	perfec	t gas molecule a	t the te	emperature T K is
	(1)	$\frac{1}{2}kT$	(2)	kT	(3)	$\frac{3}{2}kT$	(4)	2kT
73.	The	amount of heat g	iven t	o a body which r	aises i	ts temperature by	y 1°C	
	(1)	water equivalent	t		(2)	thermal heat cap	pacity	
	(3)	specific heat			(4)	temperature gra	dient	
74.		ing an adiabatic p		To 100,000 100,000		s is found to be p	ropor	tional to the cube of its
	(1)	$\frac{3}{2}$	(2)	$\frac{4}{3}$	(3)	2	(4)	$\frac{5}{3}$
75.	Clad	lding in the optica	al fibe	er is mainly used	to			
	(1)					es		
	(2)	10 mm						
	(3)	•			trenot	h		

	(4)	to protect the fil	er ir	om electromagne	cue gi	iluance		

Set Code : T2

Booklet Code : A

CHEMISTRY

76.	The	valency electro	nic co	nfiguration of l	Phospho	orous atom (At.N	No. 15) is						
	(1)	$3s^2 3p^3$	(2)	3s1 3p3 3d1	(3)	$3s^23p^23d^1$	(4)	3s1 3p2 3d2						
77.	And	element 'A' of A	t.No.12	2 combines wit	h an elei	ment 'B' of At.N	0.17.	The compound formed	is					
		covalent AB		ionic AB ₂		${\rm covalent}{\rm AB}_2$		ionic AB						
78.	The	number of neu	trons p	resent in the ato	om of	Ba ¹³⁷ is								
	(1)	56	(2)	137	(3)	193	(4)	81						
79.	Hyd	Hydrogen bonding in water molecule is responsible for												
	(1)	decrease in its			-	increase in its	degree	e of ionization						
	(3)					decrease in its								
80.	In th	ne HCl molecule	e, the b	onding between	n hydro	gen and chlorine	is							
	(1)	purely covaler	nt (2)	purely ionic	(3)	polar covalent	(4)	complex coordinate						
81.	Pota	assium metal an	d potas	sium ions										
	(1)	both react with	n water		(2)	have the same number of protons								
	(3) both react with chlorine gas					have the same electronic configuration								
82.	stan	dard flask. 10 m	ofthis	solution were p	pipetted		lask ar	made upto 100 ml in nd made up with distille solution now is						
	(1)	0.1 M	(2)	1.0 M	(3)	0.5 M	(4)	0.25 M						
83.	Con	centration of a	1.0 M s	solution of pho	sphoric	acid in water is								
	(1)	0.33 N	(2)	1.0 N	-	2.0 N	(4)	3.0 N						
84.	Whi	ch of the follow	ing is	Lewis acid?										
	(1)	Ammonia			(2)	Berylium chloride								
	(3)	Boron trifluor	ide		(4)	Magnesium ox								
	,				14-A									

Set Code :	T2
Booklet Code :	A

85.			-	nstitutes the con	•		olution	1?	
	(1)			nd potassium hy	droxi	ie			
	(2)	Sodium acetat							
	(3)	Magnesium su	lphate	and sulphuric aci	id				
	(4)	Calcium chlor	ide and	d calcium acetate					
86.	Whi	ich of the follow	ing is	an electrolyte?					
	(1)	Acetic acid	(2)	Glucose	(3)	Urea	(4)	Pyridine	
87.		culate the Stand		of the cell, Cd	//Cd+2	//Cu ⁺² /Cu given	that E	$E^0 \text{ Cd/Cd}^{+2} = 0.44 \text{ V}$	and
	(1)	(-) 1.0 V	(2)	1.0 V	(3)	(-) 0.78 V	(4)	0.78 V	
88.	A so	olution of nickel	chlori	de was electroly	sed us	sing Platinum el	ectrod	es. After electrolysi	s,
	(1)							ted at the cathode	
	(3)							ted on the cathode	
89.	Whi	ich of the follow	ing me	etals will undergo	oxid	ation fastest?			
	(1)	Cu	(2)	Li	(3)	Zinc	(4)	Iron	
90.	Whi	ich of the follow	ing ca	nnot be used for	the ste	erilization of drin	nking	water?	
	(1)	Ozone			(2)	Calcium Oxycl	hloride	e	
	(3)	Potassium Chi	loride		(4)	Chlorine water			
91.	Aw	ater sample sho	wed it	to contain 1.20 m	g/litro	e of magnesium s	sulpha	te. Then, its hardnes	s in
	term	ns of calcium car	rbonate	e equivalent is					
		1.0 ppm		1.20 ppm	(3)	0.60 ppm	(4)	2.40 ppm	
92.	Sod	a used in the L-S	Sproce	ess for softening	of wa	ter is, Chemicall	y.		
	(1)	sodium bicarbo	onate		(2)	sodium carbona	ate dec	cahydrate	
	(3)	sodium carbon	ate		(4)	sodium hydrox	ide (4	0%)	.0
93.	The	process of ceme	entation	n with zinc powd	er is k	known as		20	
		sherardizing	(2)	zincing	(3)	metal cladding	(4)	electroplating	
					15-A				

94.	Carr	rosion of a metal is fastest in		
74.	(1)		r(3)	distilled water (4) de-ionised water
	(1)	Tam-water (2) desidanted water	(5)	distinct valer (1) de foiliset valer
95.	Whi	ch of the following is a thermoset poly	mer?	
	(1)	Polystyrene	(2)	PVC
	(3)	Polythene	(4)	Urea-formaldehyde resin
				*
96.	Che	mically, neoprene is		
	(1)	polyvinyl benzene	(2)	polyacetylene
	(3)	polychloroprene	(4)	poly-1,3-butadiene
97.	Vulc	anization involves heating of raw rubbe	r with	
	(1)	selenium element	(2)	elemental sulphur
	(3)	a mixture of Se and elemental sulphur	(4)	a mixture of selenium and sulphur dioxide
98.	Petro	ol largely contains		
	(1)	a mixture of unsaturated hydrocarbons	C ₅ -(C ₈
	(2)	a mixture of benzene, toluene and xyle	ene	
		a mixture of saturated hydrocarbons C		4
	(4)	a mixture of saturated hydrocarbons C	$_6$ - C_8	¥
99.		ch of the following gases is largely resp		
		SO ₂ & NO ₂		CO ₂ & water vapour
	(3)	CO ₂ & N ₂	(4)	N ₂ &CO ₂
100.		stands for		
	(1)	Biogenetic Oxygen Demand	(2)	Biometric Oxygen Demand
	(3)	Biological Oxygen Demand	(4)	Biospecific Oxygen Demand

Set Code :	T2
Booklet Code :	A

MINING ENGINEERING

101.	The	core (dia in mm) size obtained with NX	\size		
	(1)	21 .		(2)	28
	(3)	40		(4)	54
102	Bore	e hole deviation is degrees for	30 m.		
102.	(1)		(2)		
	(3)		(4)		
					M
103.	The	following safety device is provided in	sinkin	g sha	aft in case of overwind
	(1)	spider	(2)	kibb	ble
	(3)	detaching hook	(4)	ride	er
104.	The is	method of sinking adopted in unstable or German tubing	r friabl		ata with heavy inrush of water encountered ced drop
	(3)	cementation method	(4)	freez	ezing method
105.	The	Velocity of detonation of premix cartri	dge is		
	(1)	5000 m/s	(2)		00 m/s
				3200	00 m/s
					* *
106.	The	constituents in slurry explosive (TNT:	AN: V	Vater)	r)
	(1)	20:15:65	(2)	20:6	65:15
	(3)	15:20:65	(4)	65:1	15:20
107.	Reli	eving hole should be drilled at least	m aw	ay fro	om the misfired hole in the under ground.
	(1)	1	(2)	0.5	
	(3)	0.3	(4)	0.2	*
		d I	7-A		(MIN)

Set Code :	
Booklet Code :	A

108.	8. The pattern of cut mostly preferred for laminated strata is							
	(1)	Ring drilling (2) fan cut	(3)	pyramid cut	(4)	burn cut		
		(a.:						
109.	To get lumpy coal or to minimize the coal dust the blasting technique adopted is							
	(1)	cushion blasting	(2)	muffled blasting	g			
	(3)	coyote blasting	(4)	pop shooting				
110.	. In roof stitching the face should not be advanced more than m from the last tensioned rope							
		4 m (2) 3 m		2.4 m		2 m		
		70				(4)		
111.	In sa	and stowing incorrect profile will leads	sto					
	(1)	cavitations	(2)	wear on pipes				
	(3)	setup pulsation	(4)	jamming				
112.	Ring	g rose detector works on the principle	of			Š		
	(1)	Formation of gas cap	(2)	Wheatstone bridge				
	(3)	Diffusion-combustion-contraction	(4)	Optical properties				
113	The	elements in the delay element of short	delav	detonator				
115.	(1)							
	(2)	Red lead and silicon		10				
	(3)	silicon and Antimony						
		PETN and ASA						
	(.)	·		e				
114.	Cone	e sheets are						
	(1)	Sills	(2)	Dykes				
	(3)	folds	(4)	faults				